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Fast Heuristics for Designing Integrated E-Waste
Reverse Logistics Networks

I-Lin Wang and Wen-Cheng Yang

Abstract—This paper investigates a mixed-integer linear pro-
graming model that solves an integrated facility location and
configuration problem for recycling electronic waste (e-waste).
Since different recycled e-waste consume different levels of recy-
cling processes and resources, the capability of processing only
one or more categories of recycled e-waste for each candidate
facility is considered in addition to its location to maximize the
total revenue. Computational experiments based on proposed
heuristics are conducted using data collected from Taiwan’s
recycled e-waste market and show our proposed methods give a
high-quality near-optimal solution in a promising time shorter
than previous solution methods and CPLEX.

Index Terms—Electronic waste, facility location, heuristics,
mixed-integer linear programing, reverse logistics.

I. INTRODUCTION

WITH the growing economy, the increasing amount of dis-
posed goods can induce important environmental issues

if they are not properly managed at product end of life. Re-
verse logistics, the activities to collect and process used prod-
ucts, has been extensively investigated recently to preserve as
much of the residual value of used products in a way friendly to
the environment. For example, the environmental regulations in
Taiwan mandate the manufacturers and importers to take back
their products. Manufacturers and importers contribute approx-
imately $20 USD of disposition fees for each new electronic
appliance and computer to a fund established by the Environ-
mental Protection Administration (EPA) of Taiwan. The fund
committee is responsible in evaluating the amount of disposi-
tion fees and certifying the take-back rate to establish an effec-
tive reverse logistics system.

Decisions made by the fund committee may have great affects
on the entire reverse logistics system. In particular, changing
the disposition fee for a specific category of recycled products
may encourage (or discourage) reverse logistics companies to
raise (or lower) its take-back rate. Besides specifying the sub-
sidy for recycling specific products, a government may enact
regulations to limit or encourage the locations or configurations
for specific recycling facilities. To evaluate the performance of
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a reverse logistics system in its planning stage, a government
or a company may first formulate their problem as a mathe-
matical programing problem, solve it, and then perform sensi-
tivity analysis. The design of a reverse logistics system is usu-
ally treated as a mixed integer linear programing problem (MIP)
which seeks the maximum total revenue or minimum total cost
obtained by optimal facility locations and transportation assign-
ments for processing and shipping the recycled products or ma-
terials in accordance with the operational capacities and the reg-
ulations. The sensitivity analysis for MIP may be conducted by
iteratively solving MIPs of the same problem structure but with
slightly different settings of coefficients. Unfortunately, solving
such a MIP in reasonable time is usually a hard task even using
a state-of-the-art optimization software like CPLEX (see ILOG
[4]).

Developing a solution method that computes the optimal or
near-optimal solutions in shorter time is not only useful for con-
ducting the sensitivity analysis, but also beneficial in solving
network design problem under uncertainty. In particular, during
the supply chain design phase, the uncertainty in demands and
prices should be considered to achieve better management over
the planned time horizon. The discounted cash flow analysis in-
corporated with the decision tree methodologies can be used for
evaluating the network design decisions (see Chopra and Meindl
[2]) under uncertainty, in which each node in the decision tree
corresponds to an MIP. As one solves an MIP at each node in
the decision tree and works backwards from future period based
on the Bellman’s principle, exponentially many MIPs have to be
solved which could be a very time-consuming task. In practice,
such a strategy analysis may not require all the MIPs to be solved
to optimality; thus, fast heuristics to compute for solutions in
shorter time will definitely decrease the computational efforts
required for conducting the sensitivity analysis or designing the
network under uncertainty.

Previous research in reverse logistics network design problem
usually only considers universal facilities which can collect or
process all kinds of recycled products. Such an assumption is, in
fact, not realistic since the major players in recycling industries
typically engage in niche markets based on their core compe-
tencies. Moreover, some governments (e.g., Taiwan) even make
regulations to forbid certain categories of recycled products to
be collected or processed by the same company or facility due
to safety and environmental concerns, as well as maintaining
the competitive market for the recycling industries. Therefore,
a more reasonable assumption in designing a reverse logistics
network should also consider different configurations of facil-
ities for different categories of recycled products. Using dif-
ferent facility configurations to recycle different categories of
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recycled e-waste is a common practice in Taiwan’s e-waste re-
cycling industry. For example, suppose there are two categories
of recycled e-waste (e.g., category 1: TV, refrigerator, washing
machine, and air condition; category 2: computer, printer and
scanner), for a candidate facility location, one may either choose
not to build any facility at all, or build a facility with configura-
tion for processing the recycle e-waste of category 1, of category
2, or of both categories. In particular, given a candidate loca-
tion qualified for building a facility that can collect or process
exactly of the entire categories of recycled products, the fa-
cility will have possible configurations to be built. Further-
more, one may at most have options
to build a facility that can collect or process up to categories of
recycled products. Such flexibility in constructing different con-
figurations of facilities is very important to achieve a better re-
verse supply chain management, although it will induce a large
number of new variables and constraints.

The major contributions of this paper are twofold. First, be-
sides the optimal facility locations and transportation assign-
ments for recycling e-waste as usually considered in the liter-
ature, we also consider the flexibility of facility configurations
and seek an optimal facility configuration to be built—whether
it only processes a specific category or all categories of recy-
cled e-waste. Second, we propose two solution methods that
can compute a near-optimal solution with good quality in a time
much shorter than previous solution methods and CPLEX. The
rest of this paper is organized as follows. Section II reviews
the problems and solution methods in designing reverse logis-
tics networks. In Section III, we propose an MIP to formulate
the optimal facility location and configuration problem for a re-
verse logistics system. Two solution methods are proposed in
Section IV to solve the MIP. Section V presents settings of our
computational experiments and analysis of the results. Finally,
Section VI summarizes and concludes the paper.

II. LITERATURE REVIEW

Some recycled products may require special treatments for
hazardous materials produced during the recycling processes.
Different products consume different levels of recycling pro-
cesses, resources, and equipments. Thus, not only should one
consider the optimal location for the facilities, but also the type
of recycling equipments in the facilities should be considered
to achieve better supply chain management. However, most
previous research focuses only on the optimal facility location
problem.

Shih [11] introduces and analyzes the reverse logistics system
for recycling electronic appliances (TVs, refrigerators, washing
machines, and air conditioners) and computers in Taiwan. He
proposes a reverse logistics network model which contains four
types of nodes: 1) a collecting point that collects recycled prod-
ucts; 2) a storage site that serves as a buffer where recycled prod-
ucts may be sorted or classified according to their conditions; 3)
a disassembly/recycle plant that disassembles and classifies the
four major electronic appliances or computers; and 4) a final
treatment and landfill which are the last stage of the disposal
process. Each of these four stakeholders (nodes) can claim a
subsidy. An MIP model is proposed and real-world parameters

Fig. 1. Reverse logistics network for recycling electronic waste.

and coefficients corresponding to the e-waste recycling industry
in Taiwan are also provided in the paper.

Fleischmann et al. [3] surveys quantitative models for reverse
logistics. Marin and Pelegrin [7] investigates Lagrangian relax-
ation-based methods to solve a return location problem which
identifies the optimal locations for return plants to receive and
distribute used or damaged products in minimum total cost.
Barros et al. [1] give a two-level location model for recycling
the construction waste (i.e., sand). The problem is NP-hard and
solved by heuristics. Hu et al. [5] present a linear cost-minimiza-
tion model for minimizing the total operating costs of a multi-
time-step, multitype hazardous-waste reverse logistics system.
Nagurney and Toyasaki [9] construct the multitiered e-cycling
network equilibrium model, give a variational inequality formu-
lation, and solve it using the modified projection method. Min et
al. [8] propose a nonlinear MIP model and a genetic algorithm
that can solve the reverse logistics problem involving product
returns.

Jayaraman et al. [6] study a reverse distribution problem and
propose greedy heuristics which combine both a concentration
(first proposed by Rosing and ReVelle [10] to solve -median
problems) procedure and an expansion procedure to select good
location candidates. Their computational results show the su-
periority of their heuristic methods to CPLEX for computing a
near-optimal solution in short time. Despite the good computa-
tional results of their algorithms, we have identified some room
for further efficiency improvement. For example, their heuristic
expansion (HE) procedure requires too many iterations of com-
putation, which we will aim to reduce without sacrificing the
quality of the solution computed. In addition, their procedure
CC only considers the ratio of the fixed and operational cost to
the facility capacity, whereas the effect of the transportation cost
is ignored.

In this paper, we will investigate better heuristics based on
the methods proposed by Jayaraman et al. [6] on solving a fa-
cility location and configuration problem in reverse logistics
networks of recycling electronic appliances and computers. Our
MIP model is based on the model proposed by Shih [11], whose
real-world parameters collected from Taiwan’s e-waste recy-
cling industry will also be exploited in our computational exper-
iments. Considering the current practice in Taiwan where there
are usually two major categories of recycled e-waste, for each
candidate facility location, we give four facility configuration
options for a manager: to build a facility for processing the re-
cycled e-waste of category 1, category 2, or both, besides the
option of not constructing any facility at all.
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III. PROBLEM FORMULATION

Let , , , and be the set of collecting points, storage
sites, recycle plants, and final treatment sites, respectively. An
e-waste reverse logistics network is illustrated in Fig. 1, where a
node represents a site in the node set and an
arc belongs to the arc set

. In particular, products for recycling are collected in a
node in , then they are either shipped to a node in and then to
a node in , or directly to a node in . Products will be recycled
in a node in (e.g., some disassembling or sorting processes)
to obtain sorted materials which are then to be shipped to nodes
in for final treatment or landfill.Parameters for modeling our
mixed integer programing problem are listed as follows.

the amount of recycled products of category
shipped from node to node for each

arc and both and are of
configuration 0 (i.e., they are able to process
both categories of recycled products at the
same time).
the amount of recycled material from node to
node for each arc .

and binary variables to denote whether a new
facility or of configuration (0, 1, or 2) is
to be built (with value 1) or not (with value 0).
unit subsidy for recycled products of category

in node where for collection point,
for storage site, for recycle plant.

a given estimated amount of recycled products
of category in collecting point

TCIS unit transportation cost for recycled products of
category from a collecting point to a storage
site.

TCSP unit transportation cost for recycled products of
category from a storage site to a recycle plant.

TCIP unit transportation cost for recycled products of
category from a collecting point to a recycle
plant.

TCPR unit transportation cost for sorted material
from a recycle plant to final treatment and
landfill.
distance between node and node .

unit operational cost for recycled products of
category in node where for collection
point, for storage site, for recycle
plant.
fixed cost for a new facility ( or ) of
configuration (0, 1, or 2).
set of profitable sorted material in the final
treatment and landfill, each unit earns units
of money.
set of useless sorted material in the final
treatment and landfill, each unit costs units
of money.
amount of sorted material from recycle plant
to final treatment and landfill .

MAX

(Subsidy)

TCIS TCIS

TCSP TCSP

TCIP TCIP

TCPR

(Transportation Cost)

(Operational Cost)

(Fixed Cost)

(1)
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total amount of recycled products of category
passing through recycle plant .
percent of sorted material obtained from each
unit of recycled products of category .

The mathematical programing formulation for our facility lo-
cation and design problem is shown in (1) at the bottom of the
previous page, subject to (2)–(19) shown at the bottom of the
page.

The objective function [see (1)] includes the subsidies earned
from the recycling processes, transportation costs along all arcs,
fixed costs for opening new storage sites and recycle plants, op-
erational costs of all facilities, revenues earned from sorted ma-
terials sold in the final treatment sites, and costs to process all the

useless materials. The constraints cover flow balance relation-
ships [i.e., flow entering a node plus its supply/demand equals
to flow leaving it, see (2)–(7)], facility capacities including both
the minimum and maximum designed capacities [see (8)–(13)],
and dependency relationships [see (8)–(13)].

In our problem, at most new storage sites out of the can-
didate storage sites in [see (14)] and at most new recycle
plants out of the candidate recycle plants in [see (15)] are
considered to be built besides the original storage sites and

original recycle plants. In addition to the constraints usu-
ally appeared in conventional facility location problems such as
flow balance [see (2)–(7)] and facility capacity constraints [see
(8)–(13)], we further consider the possibility of constructing

for all (2)

for all (3)

for all (4)

for all (5)

for all (6)

for all (7)

MIN MAX (8)

MIN MAX (9)

MIN MAX and (10)

MIN MAX (11)

MIN MAX and (12)

MIN MAX (13)

(14)

(15)

(16)

(17)

(18)

(19)
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different configurations of new facilities capable of processing
different categories of recycled appliances to maximize the fa-
cility utilization and total revenue. In particular, considering the
current practice in Taiwan, suppose we have two categories of
recycled products (e.g., category 1: TV, refrigerator, washing
machine, and air condition; category 2: computer, printer, and
scanner), and each new facility can be of configuration 1 (or 2)
that only processes recycled products of category 1 (or 2), or of
configuration 0 that can process both categories [see (16) and
(17)]. Different configurations of facilities have different fixed
and operational costs, as well as different minimum and max-
imum processing capacities. These options for building new fa-
cilities complicate the problem since the decision to the con-
figuration of a facility would affect not only the total cost and
processing capacity, but also the type of arcs connecting to and
from the new facilities. In particular, if a storage site (or a re-
cycle plant) is decided to be of configuration 1 (or 2), it can not
allow any recycled products of category 2 (or 1) to pass through.

In the flow balance constraints [see (2)–(7)], we associate
each arc connecting candidate sites and with variables

and , since a candidate site may be of configuration
1 or 2 (then is used), or of configuration 0 (then
is used). To formulate these options for building new facilities
(i.e., nodes in and ) together with their associated arcs,
we give the mathematical inequalities (8)–(13), (16), and (17),
where MIN MIN defines the minimum capacity, and
MAX MAX is for the maximum capacity of a new
storage site (recycle plant) of configuration . Inequalities (16)
and (17) restrict the new facility to be either of configuration 0,
1, or 2 but not at the same time.

Since we give more options than conventional facility loca-
tion models for each candidate site to be constructed, our formu-
lation will induce a larger number of variables and constraints
and thus become more difficult to solve. In order to efficiently
solve our proposed model in shorter time without sacrificing the
solution qualities, we investigate new heuristics based on the
methods proposed by Jayaraman et al. [6].

IV. SOLUTION METHODS

Our problem is an NP-hard mixed integer linear programing
problem; thus, we exploit the heuristics developed by Jayaraman
et al. [6] and modify part of their procedures to get better so-
lutions in shorter time. In particular, we give four procedures:
1) random selection (RS); 2) heuristic concentration (HC); 3)
modified heuristic expansion (MHE); (4) modified CC (MCC)
to solve our problem. Among these four procedures, the RS
and HC procedures are imported from Jayaraman et al. [6] with
slight modifications in some parameters such as the number of
candidate sites to be ranked and selected, whereas the other two
new procedures MHE and MCC are modified from the proce-
dures HE and CC of Jayaraman et al. [6], respectively.

A. RS HC MHE Algorithm

Our first algorithm contains three procedures. In particular,
RS iteratively solves smaller min-cost flow subproblems with
randomly selected candidate sites, where each subproblem
seeks the best transportation assignments between the selected

candidate sites that minimize the total facility and transporta-
tion costs. Since each subproblem corresponds to an easier
linear programing (LP) problem, we run this procedure for
times (e.g., ), and rank the sites ever appeared in the
optimal solutions for these smaller LP subproblems. Intuitively,
a candidate site that appears more often in the optimal solution
sets of RS may tend to appear in the optimal solution of the
original problem. HC then selects sites appeared more often in
the solution sets of RS, solves a small MIP to determine the
optimal candidate sites among those selected candidate sites,
and then updates the optimal solution obtained in the procedure.
To prevent possible bias caused by the small MIP solved in
HC, procedure MHE further expands the scale of candidate
sites based on HCs solution set, and then iteratively adds new
candidate sites to the small MIP and solves the MIP of larger
size until no further improvement in the objective function is
occurred. Our MHE requires much fewer iterations and shorter
time than its original version HE, as proposed by Jayaraman et
al. [6]. Even better, our computational results show our method
RS HC MHE can obtain a solution of similar quality in

shorter time than the method RS HC HE proposed by
Jayaraman et al. [6].

Here we give the procedures of RS as illustrated in the fol-
lowing steps 1–4.

Random selection (RS)

1) Randomly select storage sites and recycle plants as
candidate sites ( and are predefined parameters).

2) Solve the problem (i.e., a min-cost flow subproblem) to
optimality, save the best solution and its configuration.

3) Repeat step 1–2 for times (e.g., ), denote the
number of storage sites and recycle plants in the best of
these solution sets to be and , respectively. Also,
save the best (e.g., ) solution sets among the entire

solution sets.
4) Record and rank the frequency for each storage site and

recycle plant appeared in the entire solution sets.
We then continue the next procedure HC as illustrated in the

following steps 5–6.

Heuristic concentration (HC)

5) In addition to the current best storage sites and
recycle plants in the best solution set obtained in Step 3,
include the best additional storage sites and

recycle plants from the ranked candidate
list appeared in the best solution sets obtained in step 3
to the new candidate sites.

6) Solve the small MIP with the selected candidate
storage sites and candidate recycle plants to
optimality. Update the best solution and its configuration
of storage sites and recycle plants.

Finally we execute procedure MHE as illustrated in the fol-
lowing steps 7–10.

Modified heuristic expansion (MHE)

7) In addition to the current best storage sites and
recycle plants in the solution obtained in Step 6,
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include the best additional storage sites and
recycle plants from the ranked candidate

list obtained in step 4 to the new candidate sites.
8) Solve the small MIP with the selected candidate

storage sites and candidate recycle plants to
optimality. Update the best solution and its configuration.

9) Repeat steps 7 and 8 until all storage sites and recycle
plants have been checked.

10) Report the best solution found in step 9.

Our RS and HC procedures follow the same steps as proposed
by Jayaraman et al. [6] except the following changes

1) Our RS save the best solution sets among the entire
solution sets and use these best solution sets as a good
start for HC, whereas the original RS sets

2) Our HC solves the MIP with the selected candidate
storage sites and candidate recycle plants, whereas
the original HC use candidate storage sites and
candidate recycle plants.

The effects of these changes in parameters are rather case-de-
pendent and have no particular theoretical implication. In our
computational experiments, we use the settings and

. We decide to have more candidate sites in our HC pro-
cedure than its original version since the MIP in our HC is
still of small size and easily solvable. Furthermore, although
our RS HC may take slightly more time than their original
versions, we are able to compute a better solution to start with
MHE. The quality of the initial solution for MHE could dramat-
ically cut off the computational efforts required in MHE. This
is especially beneficial since MHE usually consumes the most
computational time in our experiments.

The original HE procedure by Jayaraman et al. [6] is initial-
ized by the best candidate storage sites and candidate
recycle plants obtained from HC. It solves an MIP which keeps
the original best candidate sites but with additional one candi-
date storage site or one candidate recycle plant. Different MIPs
using different additional candidate sites are solved until all the
candidate sites have ever been included. The best-found solu-
tion will then be used as new initial candidate sites and then dif-
ferent MIPs using different additional candidate sites (adding
one candidate storage site or one recycle plant) are solved re-
peatedly until all the candidate sites have ever been included.
These steps are repeated until no better solution is found. In gen-
eral, the original HE could take a lot of computational efforts,
especially when and are much smaller than and ,
respectively. In our computational experiments, we have expe-
rienced such a computational burden. Therefore, we decide to
give a moderate number of additional candidate sites (i.e., ad-
ditional storage sites and recycle
plants) and exploit the ranked information obtained in step 4.
Our modification does dramatically decrease the computational
efforts in seeking better candidate sites, compared with the orig-
inal HE procedure. Our modification is also very effective for
solving larger problems. For example, as illustrated in Fig. 2,
the original RS HC HE method spends more time in com-
puting a near-optimal solution for our problem set 2, whereas
CPLEX runs much faster than RS HC HE to compute an
exact optimal solution. This makes the original RS HC HE
(and especially HE) unattractive since the purpose of a heuristic

Fig. 2. Comparison in computational time for ten random cases of problem set
1 using five algorithms: CPLEX, RS+HC+MHE, MCC+MHE, RS+HC+HE,
and CC + HE.

Fig. 3. Comparison in optimality gap with respect to CPLEX for ten random
cases of problem set 1 using five algorithms: RS, RS+HC, RS+HC+MHE,
MCC, and MCC + MHE.

is to compute a near-optimal solution in a time much shorter
than any method (e.g., CPLEX) that computes for an exact op-
timal solution. On the other hand, our RS HC MHE heuristic
does compute for a near-optimal solution (see Fig. 3) in a time
much shorter than CPLEX, which shows the effectiveness of our
heuristics.

Besides the iterative application of RS, HC, and MHE, we
also propose the following procedures which may save more
time with satisfactory results.

B. MCC MHE Algorithm

Besides using RS and HC, Jayaraman et al. [6] also propose
another procedure named CC which considers the unit capacity
cost induced by the fixed and operational cost for each facility.
In particular, CC calculates the ratio of the total fixed and op-
erational cost to the capacity for each facility, and then selects
the facilities with smaller unit capacity cost as a starting point
to apply their HE procedure.

Here, we further modify the original CC by including all the
transportation costs associated with a facility into consideration
and propose a modified CC procedure named MCC as illustrated
in the following steps 1–3.

Modified procedure CC (MCC)

1) Rank all storage sites and recycle plants by the total cost
(fixed, operational, and transportation) per unit capacity.

2) Select storage sites and recycle plants with
the cheapest cost per unit capacity.

3) Solve the problem to optimality.
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TABLE I
FIVE TEST PROBLEM SETS AND THEIR TOPOLOGY SETTINGS

Our MCC procedure does give smaller optimality gap than
CC (see Section V for details) that validates the fact that our
modification does serve its purpose.

The computational results and analysis are discussed in
Section V.

V. COMPUTATIONAL RESULTS AND ANALYSIS

We use five test problem sets with network topology settings
as listed in Table I. All cases start with only one existing storage
site (i.e., ) and one recycle plant (i.e., ), and the
seek to construct up to new storage sites among the candi-
date storage site locations and up to new recycle plans among
the candidate recycle plants so that the total revenue is max-
imized. Five problem sets have been tested. For each problem
set, we generate ten random cases (trials) of the same topology
setting but different associated coefficients (e.g., cost, capacity,
subsidy, , etc). We average the performance (i.e., the compu-
tational time and solution quality) of each method for the ten
random cases of the same problem set configuration. The co-
efficients are reasonably estimated according to the real-world
data collected in Taiwan’s recycled electronic industries as well
as the information collected by Shih [11]. The tests were con-
ducted using Visual C++, CPLEX 6.5.1 callable library on an
Intel Pentium 4 machine with 3.20-GHz CPU and 1-GB RAM.

On average, it takes 802 s to solve problem set 1 by RS HC
HE algorithm and 832 s by CC HE, whereas 304 s by CPLEX.
The long computational times spent by RS HC HE and CC
HE make these two methods proposed by Jayaraman et al. [6]
unattractive in all of our computational tests. On the other hand,
as illustrated in Fig. 2, the average time for solving problem set 1
by our proposed methods, RS HC MHE (107 s) and MCC
MHE (74 s), are much shorter than that by CPLEX (304 s).
Fig. 2 also shows that HE slows down the methods RS HC
HE and CC HE by Jayaraman et al. [6], whereas our MHE
successfully cuts down the computational time as expected. In
general, for larger problems (e.g., problem 2), our methods RS
HC MHE (879 s) and MCC MHE (533 s) save even more
time than the RS HC HE (3625 s) and CC HE (3716 s)
by Jayaraman et al. [6].

When solving a case, let denote the optimal objective
value obtained by CPLEX, and be the objective value ob-
tained by a solution method . We define the optimality gap for
the solution method to be and use it as a per-
formance evaluation parameter. A good solution method should
give a solution with small optimality gap. Fig. 3 shows the opti-
mality gap for different methods in solving the ten random cases
of problem set 1. In particular, the optimality gap of RS (with
average gap 4.64%) can be improved by RS HC (with average
gap 2.12%), which can be further improved by RS HC MHE

Fig. 4. Comparison in averaged optimality gap with respect to CPLEX for five
problem sets using two algorithms: RS+ HC+MHE and MCC+MHE.

(with average gap 0.798%). This result shows that the solution
computed by RS and HC requires further polishing, and MHE
does successfully boost the quality of the heuristic solution. On
the other hand, the solution quality by MCC (with average gap
1.49%) can also be improved when it is used in conjunction with
MHE (with average gap 0.44%).

Although not shown in Fig. 3, the original CC procedure
has larger average gap (3.92%) than the average gap of MCC
(1.49%), which validates our modification on MCC does serve
its purpose. Moreover, even if the solution quality of CC HE
(with average gap 0.19%) is slightly better than the solution
quality of MCC MHE (with average gap 0.44%), the computa-
tional time of CC HE (832.24 s) is much longer than MCC
MHE (73.68 s) which makes the tradeoff of using CC HE
unattractive.

Fig. 3 also shows the optimality gaps by RS HC MHE
(0.798%) and MCC MHE(0.44%) are both satisfactorily
small. Thus, our proposed methods do compute a solution of
good quality in short time. Similar trends in performance in
both the computational time and optimality gap can also be
observed in the tests on problem set 2, 3, 4, and 5. Here, we
only give the detailed results of problem set 1 for illustration
(see Figs. 2 and 3).

For larger problems (e.g., problem 2), our methods
RS HC MHE (with average optimality gap 0.94%)
and MCC MHE (with average optimality gap 0.86%) have
slightly larger optimality gap than the RS HC HE (0.52%)
and CC HE (0.48%). However, the save in the running time of
our methods has more significant advantages than the heuristics
by Jayaraman et al. [6]. Such a tradeoff is very important when
a large number of MIPs have to be solved in the process of
conducting sensitivity analysis or evaluating network design
decisions under uncertainty.

Fig. 4 shows the average optimality gap of our methods for
solving five problem sets. It is difficult to judge which of our
methods (i.e., RS HC MHE and MCC MHE) is better in
terms of optimality gap. Nevertheless, Fig. 5 shows our MCC
MHE takes less computational time than RS HC MHE in
our experiments, because RS HC takes longer time than MCC.
This shows that a heuristic based on simple and intuitive ideas
(e.g., MCC) may still be competitive. Moreover, understanding
the nature of a problem may help design a simple heuristic,
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Fig. 5. Comparison in averaged computational time for five problem sets using
three algorithms: CPLEX, RS+ HC+MHE, and MCC+MHE.

which may even sometimes be able to beat other complicated
methodologies.

In summary, our proposed heuristics successfully shorten the
computational time required by previous heuristics and CPLEX.
The solution quality obtained by our methods is also very good,
which makes our methods especially suitable for solving diffi-
cult reverse logistics network design problems.

VI. CONCLUSION

In this paper, we have given a new mixed integer linear pro-
graming model that considers both the location and configura-
tion for a new facility to maximize the overall utilization and
revenue for designing an e-waste reverse logistics network. Our
mathematical model is based on the common practice of the
e-waste recycling industry in Taiwan where different facility
configurations are used to recycle different categories of recy-
cled e-waste. Although only two categories of recycled prod-
ucts are considered in our model, our mathematical modeling
techniques can be further generalized to the cases of more cat-
egories with slight modifications. This consideration of facility
configuration is not only practical but also very important in the
network design phase since more flexibility can be obtained to
achieve a better reverse supply chain management.

Sensitivity analysis and evaluations on the decisions of de-
signing reverse logistics networks under uncertainty are impor-
tant tasks in the management level, where a large number of dif-
ficult MIPs have to be solved in short time. We have proposed
two algorithms (RS HC MHE and MCC MHE) to success-
fully compute a solution of good quality in shorter time, com-
pared with previous heuristics and the exact optimal solution
methodologies. Our computational experiments validate the ef-
fectiveness and efficiency of our proposed algorithms, and also
suggest the advantage of understanding the problem nature in
designing simple and good heuristics.
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